If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-50x+150=0
a = 2; b = -50; c = +150;
Δ = b2-4ac
Δ = -502-4·2·150
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{13}}{2*2}=\frac{50-10\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{13}}{2*2}=\frac{50+10\sqrt{13}}{4} $
| 19w=3 | | 2x^2=50x+150 | | 7x+1-x=8-(x+7) | | (2x+2)(3x-7)=25 | | x+5/9=17/18 | | 6x^2-8x-14=25 | | y/4-8=15 | | 12+x+(x*2)=60 | | x-2/5=-2/5 | | 8x-(3x+24)=1 | | 2-2^x/3-7=18 | | 4r+8/12=4r-32/4 | | (3/4)x-(2/3)=x+(5/6) | | 1/7+2x/3=1/3(15x-3) | | d•5=8.62 | | 4x+154=-5x+46 | | 7d=17 | | 2(-17x+x)=-14 | | x-2/5=1/15 | | 8x/3-2=30 | | 4x+3=270 | | 3/7z=-9 | | d•6=7.3 | | 4x+3=540 | | 2(x+2)=7(x-1)+9 | | 42=49-u | | x/2.3=7.1 | | Y=0.8x+1.2 | | v-39=6 | | -0.7a=49 | | m-5m-3m+5=-7m+5 | | 95=19^x |